Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
1.
Sci Rep ; 14(1): 1344, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228723

RESUMO

Calcitonin gene-related peptide (CGRP), a neuropeptide composed of 37 amino acids secreted from the sensory nerve endings, reportedly possesses various physiological effects, such as vasodilation and neurotransmission. Recently, there have been increasing reports of the involvement of CGRP in bone metabolism; however, its specific role in the pathogenesis of periodontitis, particularly in the repair and healing processes, remains to be elucidated. Therefore, this study aimed to investigate dynamic expression patterns of CGRP during the destruction and regeneration processes of periodontal tissues in a mouse model of experimental periodontitis. We also explored the effects of CGRP on periodontal ligament cells, which can differentiate to hard tissue-forming cells (cementoblasts or osteoblasts). Our findings demonstrated that CGRP stimulation promotes the differentiation of periodontal ligament cells into hard tissue-forming cells. Experimental results using a ligature-induced periodontitis mouse model also suggested fluctuations in CGRP expression during periodontal tissue healing, underscoring the vital role of CGRP signaling in alveolar bone recovery. The study results highlight the important role of nerves in the periodontal ligament not only in sensory reception in the periphery, as previously known, but also in periodontal tissue homeostasis and tissue repair processes.


Assuntos
Tecido Nervoso , Periodontite , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Periodonto/metabolismo , Ligamento Periodontal/metabolismo , Periodontite/genética , Periodontite/metabolismo , Tecido Nervoso/metabolismo
2.
Brain Behav Immun ; 116: 203-215, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070625

RESUMO

Pain is the most debilitating symptom of knee osteoarthritis (OA) that can even persist after total knee replacement. The severity and duration of pain do not correlate well with joint tissue alterations, suggesting other mechanisms may drive pain persistence in OA. Previous work identified that macrophages accumulate in the dorsal root ganglia (DRG) containing the somas of sensory neurons innervating the injured knee joint in a mouse OA model and acquire a M1-like phenotype to maintain pain. Here we aimed to unravel the mechanisms that govern DRG macrophage accumulation and programming. The accumulation of F4/80+iNOS+ (M1-like) DRG macrophages was detectable at day 3 after mono-iodoacetate (MIA)-induced OA in the mouse. Depletion of macrophages prior to induction of OA resolved pain-like behaviors by day 7 without affecting the initial development of pain-like behaviors. Analysis of DRG transcript identified CXCL11 and myostatin. CXCL11 and myostatin were increased at 3 weeks post OA induction, with CXCL11 expression partially localized in satellite glial cells and myostatin in sensory neurons. Blocking CXCL11 or myostatin prevented the persistence of OA pain, without affecting the initiation of pain. CXCL11 neutralization reduced the number of total and F4/80+iNOS+ DRG macrophages, whilst myostatin inhibition diminished the programming of F4/80+iNOS+ DRG macrophages. Intrathecal injection of recombinant CXCL11 did not induce pain-associated behaviors. In contrast, intrathecal myostatin increased the number of F4/80+iNOS+ DRG macrophages concurrent with the development of mechanical hypersensitivity that was prevented by macrophages depletion or CXCL11 blockade. Finally, myostatin inhibition during established OA, resolved pain and F4/80+iNOS+ macrophage accumulation in the DRG. In conclusion, DRG macrophages maintain OA pain, but are not required for the induction of OA pain. Myostatin is a key ligand in neuro-immune communication that drives the persistence of pain in OA through nervous tissue macrophages and represent a novel therapeutic target for the treatment of OA pain.


Assuntos
Tecido Nervoso , Osteoartrite do Joelho , Ratos , Camundongos , Animais , Miostatina/metabolismo , Ratos Sprague-Dawley , Dor/metabolismo , Modelos Animais de Doenças , Tecido Nervoso/metabolismo , Macrófagos/metabolismo , Gânglios Espinais/metabolismo
3.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958692

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of disability and death worldwide. It is characterized by various molecular-cellular events, with the main ones being apoptosis and damage to axons. To date, there are no clinically effective neuroprotective drugs. In this study, we examined the role of hydrogen sulfide (H2S) in the localization and expression of the key pro-apoptotic protein p53, as well as cell death in the nervous tissue in TBI and axotomy. We used a fast donor (sodium sulphide, Na2S) H2S and a classic inhibitor (aminooxyacetic acid, AOAA) of cystathionine ß-synthase (CBS), which is a key enzyme in H2S synthesis. These studies were carried out on three models of neurotrauma in vertebrates and invertebrates. As a result, it was found that Na2S exhibits a pronounced neuroprotective effect that reduces the number of TUNEL-positive neurons and glial cells in TBI and apoptotic glia in axotomy. This effect could be realized through the Na2S-dependent decrease in the level of p53 in the cells of the nervous tissue of vertebrates and invertebrates, which we observed in our study. We also observed the opposite effect when using AOAA, which indicates the important role of CBS in the regulation of p53 expression and death of neurons and glial cells in TBI and axotomy.


Assuntos
Lesões Encefálicas Traumáticas , Sulfeto de Hidrogênio , Tecido Nervoso , Fármacos Neuroprotetores , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Axotomia , Apoptose , Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Cistationina beta-Sintase/metabolismo
4.
Mar Biotechnol (NY) ; 25(6): 983-996, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831333

RESUMO

The insulin-like androgenic gland hormone gene (IAG), primarily expressed in the androgenic gland (AG), plays a crucial role in controlling male sex differentiation and maintaining male secondary sexual characteristics in decapods. In this study, we investigated the mRNA and microRNA expression profiles of male Procambarus clarkii to understand the transcriptomic regulatory mechanism of IAG after the injection of an efficient siRNA (GsiRNA) designed based on IAG. The results revealed that several differentially expressed genes were enriched in reproduction-related pathways, such as the wnt signaling pathway, MAPK signaling pathway, and GnRH signaling pathway. In the testis (Te), the injection of GsiRNA led to the up-regulation of many ovary-related genes and down-regulation of testis-related genes. Moreover, the brain (Br) and abdominal nerve cord (AN) appeared to be involved in the regulation of IAG, with numerous differentially expressed genes found in Br and AN. Notably, the expression of five neuropeptide genes, Crustacean hyperglycemic hormone, pigment-dispersing hormone, red pigment concentrating hormone precursor, corazonin, and gonadotropin-releasing hormone II receptor isoform X1 in Br/AN, was significantly changed. Additionally, three ovary-related miRNAs (miR-263a, miR-263b, miR-133) highly expressed in Te/AG showed significant up-regulation after GsiRNA injection. Furthermore, the long-term interference of GsiRNA was found to inhibit the development of male external sexual characteristics during the juvenile stage and delay it during the adult stage. This research provides valuable insights into the molecular regulatory mechanism and function of IAG in P. clarkii.


Assuntos
MicroRNAs , Tecido Nervoso , Animais , Feminino , Masculino , Hormônios Gonadais/genética , Hormônios Gonadais/metabolismo , Astacoidea/genética , Astacoidea/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Androgênios/metabolismo , Tecido Nervoso/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
J Neurosci ; 43(29): 5414-5430, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37286351

RESUMO

Multiple myeloma (MM) is a neoplasia of B plasma cells that often induces bone pain. However, the mechanisms underlying myeloma-induced bone pain (MIBP) are mostly unknown. Using a syngeneic MM mouse model, we show that periosteal nerve sprouting of calcitonin gene-related peptide (CGRP+) and growth associated protein 43 (GAP43+) fibers occurs concurrent to the onset of nociception and its blockade provides transient pain relief. MM patient samples also showed increased periosteal innervation. Mechanistically, we investigated MM induced gene expression changes in the dorsal root ganglia (DRG) innervating the MM-bearing bone of male mice and found alterations in pathways associated with cell cycle, immune response and neuronal signaling. The MM transcriptional signature was consistent with metastatic MM infiltration to the DRG, a never-before described feature of the disease that we further demonstrated histologically. In the DRG, MM cells caused loss of vascularization and neuronal injury, which may contribute to late-stage MIBP. Interestingly, the transcriptional signature of a MM patient was consistent with MM cell infiltration to the DRG. Overall, our results suggest that MM induces a plethora of peripheral nervous system alterations that may contribute to the failure of current analgesics and suggest neuroprotective drugs as appropriate strategies to treat early onset MIBP.SIGNIFICANCE STATEMENT Multiple myeloma (MM) is a painful bone marrow cancer that significantly impairs the quality of life of the patients. Analgesic therapies for myeloma-induced bone pain (MIBP) are limited and often ineffective, and the mechanisms of MIBP remain unknown. In this manuscript, we describe cancer-induced periosteal nerve sprouting in a mouse model of MIBP, where we also encounter metastasis to the dorsal root ganglia (DRG), a never-before described feature of the disease. Concomitant to myeloma infiltration, the lumbar DRGs presented blood vessel damage and transcriptional alterations, which may mediate MIBP. Explorative studies on human tissue support our preclinical findings. Understanding the mechanisms of MIBP is crucial to develop targeted analgesic with better efficacy and fewer side effects for this patient population.


Assuntos
Doenças Ósseas , Mieloma Múltiplo , Tecido Nervoso , Humanos , Camundongos , Masculino , Animais , Mieloma Múltiplo/complicações , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Qualidade de Vida , Dor/metabolismo , Tecido Nervoso/metabolismo , Tecido Nervoso/patologia , Gânglios Espinais/metabolismo
6.
Sci Rep ; 13(1): 8856, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258605

RESUMO

The cellular and molecular underpinnings of Wallerian degeneration have been robustly explored in laboratory models of successful nerve regeneration. In contrast, there is limited interrogation of failed regeneration, which is the challenge facing clinical practice. Specifically, we lack insight on the pathophysiologic mechanisms that lead to the formation of neuromas-in-continuity (NIC). To address this knowledge gap, we have developed and validated a novel basic science model of rapid-stretch nerve injury, which provides a biofidelic injury with NIC development and incomplete neurologic recovery. In this study, we applied next-generation RNA sequencing to elucidate the temporal transcriptional landscape of pathophysiologic nerve regeneration. To corroborate genetic analysis, nerves were subject to immunofluorescent staining for transcripts representative of the prominent biological pathways identified. Pathophysiologic nerve regeneration produces substantially altered genetic profiles both temporally and in the mature neuroma microenvironment, in contrast to the coordinated genetic signatures of Wallerian degeneration and successful regeneration. To our knowledge, this study presents as the first transcriptional study of NIC pathophysiology and has identified cellular death, fibrosis, neurodegeneration, metabolism, and unresolved inflammatory signatures that diverge from pathways elaborated by traditional models of successful nerve regeneration.


Assuntos
Tecido Nervoso , Neuroma , Traumatismos dos Nervos Periféricos , Humanos , Transcriptoma , Degeneração Walleriana/metabolismo , Regeneração Nervosa/genética , Tecido Nervoso/metabolismo , Neuroma/patologia , Análise de Sequência de RNA , Nervo Isquiático/lesões , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Microambiente Tumoral
7.
Proc Natl Acad Sci U S A ; 120(17): e2210735120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37075074

RESUMO

The invasion of nerves by cancer cells, or perineural invasion (PNI), is potentiated by the nerve microenvironment and is associated with adverse clinical outcomes. However, the cancer cell characteristics that enable PNI are poorly defined. Here, we generated cell lines enriched for a rapid neuroinvasive phenotype by serially passaging pancreatic cancer cells in a murine sciatic nerve model of PNI. Cancer cells isolated from the leading edge of nerve invasion showed a progressively increasing nerve invasion velocity with higher passage number. Transcriptome analysis revealed an upregulation of proteins involving the plasma membrane, cell leading edge, and cell movement in the leading neuroinvasive cells. Leading cells progressively became round and blebbed, lost focal adhesions and filipodia, and transitioned from a mesenchymal to amoeboid phenotype. Leading cells acquired an increased ability to migrate through microchannel constrictions and associated more with dorsal root ganglia than nonleading cells. ROCK inhibition reverted leading cells from an amoeboid to mesenchymal phenotype, reduced migration through microchannel constrictions, reduced neurite association, and reduced PNI in a murine sciatic nerve model. Cancer cells with rapid PNI exhibit an amoeboid phenotype, highlighting the plasticity of cancer migration mode in enabling rapid nerve invasion.


Assuntos
Amoeba , Tecido Nervoso , Neoplasias Pancreáticas , Camundongos , Animais , Neoplasias Pancreáticas/genética , Nervo Isquiático/metabolismo , Pâncreas/metabolismo , Tecido Nervoso/metabolismo , Movimento Celular/genética , Invasividade Neoplásica , Microambiente Tumoral
8.
Biochemistry (Mosc) ; 88(Suppl 1): S105-S122, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37069117

RESUMO

Insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) play a key role in the maintenance of the nervous tissue viability. IGF-1 and IGF-2 exhibit the neuroprotective effects by stimulating migration and proliferation of nervous cells, activating cellular metabolism, inducing regeneration of damaged cells, and regulating various stages of prenatal and postnatal development of the nervous system. The availability of IGFs for the cells is controlled via their interaction with the IGF-binding proteins (IGFBPs) that inhibit their activity. On the contrary, the cleavage of IGFBPs by specific proteases leads to the IGF release and activation of its cellular effects. The viability of neurons in the nervous tissue is controlled by a complex system of trophic factors secreted by auxiliary glial cells. The main source of IGF for the neurons are astrocytes. IGFs can accumulate as an extracellular free ligand near the neuronal membranes as a result of proteolytic degradation of IGFBPs by proteases secreted by astrocytes. This mechanism promotes interaction of IGFs with their genuine receptors and triggers intracellular signaling cascades. Therefore, the release of IGF by proteolytic cleavage of IGFBPs is an important mechanism of neuronal protection. This review summarizes the published data on the role of IGFs and IGFBPs as the key players in the neuroprotective regulation with a special focus on the specific proteolysis of IGFBPs as a mechanism for the regulation of IGF bioavailability and viability of neurons.


Assuntos
Fator de Crescimento Insulin-Like I , Tecido Nervoso , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Proteólise , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Peptídeo Hidrolases/metabolismo , Tecido Nervoso/metabolismo
9.
Curr Mol Pharmacol ; 16(2): 234-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35652396

RESUMO

BACKGROUND: The efficacy of Alzheimer's disease (AD) treatment can be enhanced by developing neurogenesis regulation approaches by synchronizing regenerative-competent cell (RCCs) activity. As part of the implementation of this direction, the search for drug targets among intracellular signaling molecules is promising. OBJECTIVE: This study aims to test the hypothesis that NF-кB inhibitors are able to synchronize the activities of different types RCCs in AD. METHODS: The effects of NF-κB inhibitor JSH-23 on the functioning of neural stem cells (NSCs), neuronal-committed progenitors (NCPs), and neuroglial cells were studied. Individual populations of C57B1/6 mice brain cells were obtained by immunomagnetic separation. Studies were carried out under conditions of modeling ß-amyloid-induced neurodegeneration (ßAIN) in vitro. RESULTS: We showed that ß-amyloid (Aß) causes divergent changes in the functioning of NSCs and NCPs. Also demonstrated that different populations of neuroglia respond differently to exposure to Aß. These phenomena indicate a significant discoordination of the activities of various RCCs. We revealed an important role of NF-κB in the regulation of progenitor proliferation and differentiation and glial cell secretory function. It was found that the NF-κB inhibitor causes synchronization of the pro-regenerative activities of NSCs, NCPs, as well as oligodendrocytes and microglial cells in ßAIN. CONCLUSION: The results show the promise of developing a novel approach to Alzheimer's disease treatment with NF-κВ inhibitors.


Assuntos
Doença de Alzheimer , Tecido Nervoso , Camundongos , Animais , NF-kappa B/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Transdução de Sinais , Peptídeos beta-Amiloides/metabolismo , Tecido Nervoso/metabolismo
10.
Acta Biomater ; 157: 124-136, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494008

RESUMO

Engineered neural tissue (EngNT) promotes in vivo axonal regeneration. Decellularised materials (dECM) are complex biologic scaffolds that can improve the cellular environment and also encourage positive tissue remodelling in vivo. We hypothesised that we could incorporate a hydrogel derived from a decellularised tissue (dECMh) into EngNT, thereby providing an alternative to the currently used purified collagen I hydrogel for the first time. Decellularisation was carried out on bone (B-ECM), liver (LIV-ECM), and small intestinal (SIS-ECM) tissues and the resultant dECM was biochemically and mechanically characterised. dECMh differed in mechanical and biochemical properties that likely had an effect on Schwann cell behaviour observed in metabolic activity and contraction profiles. Cellular alignment was observed in tethered moulds within the B-ECM and SIS-ECM derived hydrogels only. No difference was observed in dorsal root ganglia (DRG) neurite extension between the dECMh groups and collagen I groups when applied as a coverslip coating, however, when DRG were seeded atop EngNT constructs, only the B-ECM derived EngNT performed similarly to collagen I derived EngNT. B-ECM EngNT further exhibited similar axonal regeneration to collagen I EngNT in a 10 mm gap rat sciatic nerve injury model after 4 weeks. Our results have shown that various dECMh can be utilised to produce EngNT that can promote neurite extension in vitro and axonal regeneration in vivo. STATEMENT OF SIGNIFICANCE: Nerve autografts are undesirable due to the sacrifice of a patient's own nerve tissue to repair injuries. Engineered neural tissue (EngNT) is a type of living artificial tissue that has been developed to overcome this. To date, only a collagen hydrogel has been shown to be effective in the production and utilisation of EngNT in animal models. Hydrogels may be made from decellularised extracellular matrix derived from many tissues. In this study we showed that hydrogels from various tissues may be used to create EngNT and one was shown to comparable to the currently used collagen based EngNT in a rat sciatic nerve injry model.


Assuntos
Hidrogéis , Tecido Nervoso , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Tecido Nervoso/metabolismo , Engenharia Tecidual/métodos , Nervo Isquiático/lesões , Colágeno/química , Regeneração Nervosa/fisiologia , Tecidos Suporte/química , Matriz Extracelular/metabolismo
11.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(4): 379-384, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-36414565

RESUMO

Objective: To establish an optimized method for the isolation and purification of astrocytes from the neural tissues of young and aged rats. Then, the morphological and functional differences of astrocytes between young and aged rats were compared to explore the functional changes of astrocytes after aging and its possible mechanism in the aging process. Methods: Young (2 months old) and aged (20 months old) SD rats were used. Astrocytes in brain and spinal cord tissue were purified by 50% - 35% percoll density gradient centrifugation. Each group of cells was set up with three duplicate wells. After 72 h of culture, Glial fibrillary acidic protein (GFAP) which was astrocyte specific marker were detected by immunofluorescence to evaluate the morphological characteristics. Cell senescence markers (p16 and p21) and ß- Galactosidase were detected by qPCR and staining respectively. The expressions of pro-inflammatory cytokines (IL-1ß, TNF-α) and anti-inflammatory cytokines were detected by qPCR. Results: Using 50%-35% percoll gradient separation, astrocytes were obtained with large number, good activity and purity of more than 95%, which could be used in subsequent experiments. Compared with the astrocytes in the nerve tissue of young rats, the astrocytes in the nervous tissue of the aged rats had fewer protrusions and tended to be activated in cell morphology; the positive rate of ß -galactosidase staining was increased significantly and the expressions of p16 and p21 were increased (P<0.01). The expressions of pro-inflammatory cytokines (IL-1ß, TNF-α) were increased (P<0.05), and the expression of anti-inflammatory cytokine (IL-10) was decreased (P<0.05) in astrocytes of the aged rats nervous tissue. Conclusion: The percoll gradient of 50% - 35% could be used as a method for separation, purification and primary culture of astrocytes. With the increase of age, astrocytes undergo cellular senescence, showing a pro-inflammatory phenotype, promoting inflammaging of the nervous system, which may be one of the mechanisms of nervous system aging and neurodegenerative diseases.


Assuntos
Astrócitos , Tecido Nervoso , Animais , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Ratos Sprague-Dawley , Citocinas/metabolismo , Tecido Nervoso/metabolismo , Galactosidases/metabolismo
12.
Cell Tissue Res ; 388(3): 503-519, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332371

RESUMO

The Na,K-ATPase (NKA) is an essential ion transporter and signaling molecule in all animal tissues and believed to consist at least one α and one ß-subunit to form a functional enzyme. In the large milkweed bug, Oncopeltus fasciatus, adaptation to dietary cardiac glycosides (CGs), which can fatally block the NKA, has resulted in gene duplications leading to four α1-subunits. These differ in sensitivity to CGs, but resistance trades off against ion pumping activity, thus influencing the α1-subunits' suitability for specific tissues. Besides, O. fasciatus possesses four different ß-subunits that can alter the NKA's kinetics and should play an essential role in the formation of cellular junctions.Proteomic analyses revealed the distribution and composition of α1/ß-complexes in the nervous tissue of O. fasciatus. The highly CG-resistant, but less active α1B and the highly active, but less resistant α1C predominated in the nervous tissue and co-occurred with ß2 and ß3, partly forming larger complexes than just heterodimers. Immunohistochemical analyses provided a fine scale resolution of the subunits' distribution in different morphological structures of the nervous tissue. This may suggest that α1 as well as ß-subunits occur in isolation without the other subunit, which contradicts the present understanding that the two types of subunits have to associate to form functional complexes. An isolated occurrence was especially prominent for ß3 and ßx, the enigmatic fourth and N-terminally largely truncated ß-subunit. We hypothesize that dimerization of these ß-subunits plays a role in cell-cell contacts.


Assuntos
Heterópteros , Tecido Nervoso , Animais , Duplicação Gênica , Heterópteros/metabolismo , Tecido Nervoso/metabolismo , Proteômica , ATPase Trocadora de Sódio-Potássio/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163293

RESUMO

Mechanosensitive ion channels, Piezo1 and 2, are activated by pressure and involved in diverse physiological functions, including senses of touch and pain, proprioception and many more. Understanding their function is important for elucidating the mechanosensitive mechanisms of a range of human diseases. Recently, Piezo channels were suggested to be contributors to migraine pain generation. Migraine is typically characterized by allodynia and mechanical hyperalgesia associated with the activation and sensitization of trigeminal ganglion (TG) nerve fibers. Notably, migraine specific medicines are ineffective for other types of pain, suggesting a distinct underlying mechanism. To address, in a straightforward manner, the specificity of the mechanosensitivity of trigeminal vs. somatic nerves, we compared the activity of Piezo1 channels in mouse TG neurons vs. dorsal root ganglia (DRG) neurons. We assessed the functional expression of Piezo1 receptors using a conventional live calcium imaging setup equipped with a multibarrel application system and utilizing a microfluidic chip-based setup. Surprisingly, the TG neurons, despite higher expression of the Piezo1 gene, were less responsive to Piezo1 agonist Yoda1 than the DRG neurons. This difference was more prominent in the chip-based setup, suggesting that certain limitations of the conventional approach, such as turbulence, can be overcome by utilizing microfluidic devices with laminar solution flow.


Assuntos
Canais Iônicos/metabolismo , Nervo Trigêmeo/metabolismo , Animais , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Canais Iônicos/fisiologia , Dispositivos Lab-On-A-Chip , Masculino , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Tecido Nervoso/metabolismo , Neurônios/metabolismo , Dor/metabolismo , Sistema Nervoso Periférico/metabolismo , Pirazinas/farmacologia , Tiadiazóis/farmacologia , Tato/fisiologia
14.
Sci Rep ; 12(1): 2364, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149723

RESUMO

We have previously reported that RING1 and YY1 binding protein (RYBP) is important for central nervous system development in mice and that Rybp null mutant (Rybp-/-) mouse embryonic stem (ES) cells form more progenitors and less terminally differentiated neural cells than the wild type cells in vitro. Accelerated progenitor formation coincided with a high level of Pax6 expression in the Rybp-/- neural cultures. Since Pax6 is a retinoic acid (RA) inducible gene, we have analyzed whether altered RA signaling contributes to the accelerated progenitor formation and impaired differentiation ability of the Rybp-/- cells. Results suggested that elevated Pax6 expression was driven by the increased activity of the RA signaling pathway in the Rybp-/- neural cultures. RYBP was able to repress Pax6 through its P1 promoter. The repression was further attenuated when RING1, a core member of ncPRC1s was also present. According to this, RYBP and PAX6 were rarely localized in the same wild type cells during in vitro neural differentiation. These results suggest polycomb dependent regulation of Pax6 by RYBP during in vitro neural differentiation. Our results thus provide novel insights on the dynamic regulation of Pax6 and RA signaling by RYBP during mouse neural development.


Assuntos
Células-Tronco Embrionárias Murinas/metabolismo , Tecido Nervoso/embriologia , Tecido Nervoso/metabolismo , Neurogênese , Fator de Transcrição PAX6/metabolismo , Proteínas Repressoras/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Fator de Transcrição PAX6/genética , Proteínas Repressoras/genética , Tretinoína/metabolismo
15.
Molecules ; 27(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35164225

RESUMO

Excessive release of glutamate induces excitotoxicity and causes neuronal damage in several neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for preventing and treating neurological disorders. Dehydrocorydaline (DHC), an active alkaloid compound isolated from Corydalis yanhusuo, possesses neuroprotective capacity. The present study investigated the effect of DHC on glutamate release using a rat brain cortical synaptosome model. Our results indicate that DHC inhibited 4-aminopyridine (4-AP)-evoked glutamate release and elevated intrasynaptosomal calcium levels. The inhibitory effect of DHC on 4-AP-evoked glutamate release was prevented in the presence of the vesicular transporter inhibitor bafilomycin A1 and the N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC but not the intracellular inhibitor of Ca2+ release dantrolene or the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157. Moreover, the inhibitory effect of DHC on evoked glutamate release was prevented by the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) inhibitor PD98059. Western blotting data in synaptosomes also showed that DHC significantly decreased the level of ERK1/2 phosphorylation and synaptic vesicle-associated protein synapsin I, the main presynaptic target of ERK. Together, these results suggest that DHC inhibits presynaptic glutamate release from cerebrocortical synaptosomes by suppressing presynaptic voltage-dependent Ca2+ entry and the MAPK/ERK/synapsin I signaling pathway.


Assuntos
Alcaloides/farmacologia , Cálcio/metabolismo , Córtex Cerebral/efeitos dos fármacos , Corydalis/química , Ácido Glutâmico/metabolismo , Tecido Nervoso/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/química , Córtex Cerebral/metabolismo , Masculino , Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Cells ; 11(2)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053395

RESUMO

Many nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts. Next, we performed in vitro and in vivo assays, demonstrating that NLGN1 promotes cancer cell invasion and migration along nerves. Because of the established role of the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) in tumor-nerve interactions, we assessed a potential NLGN1-GDNF cooperation. We found that blocking GDNF activity with a specific antibody completely inhibited NLGN1-induced in vitro cancer cell invasion of nerves. Finally, we demonstrated that, in the presence of NLGN1, GDNF markedly activates cofilin, a cytoskeletal regulatory protein, altering filopodia dynamics. In conclusion, our data further prove the existence of a molecular and functional cross-talk between the nervous system and cancer cells. NLGN1 was shown here to function along one of the most represented neurotrophic factors in the nerve microenvironment, possibly opening new therapeutic avenues.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neoplasias/metabolismo , Tecido Nervoso/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Neoplasias/patologia , Tecido Nervoso/patologia , Ligação Proteica , Pseudópodes/metabolismo
17.
Biomolecules ; 11(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680132

RESUMO

Live imaging of neuromuscular junctions (NMJs) in situ has been constrained by the suitability of ligands for inert vital staining of motor nerve terminals. Here, we constructed several truncated derivatives of the tetanus toxin C-fragment (TetC) fused with Emerald Fluorescent Protein (emGFP). Four constructs, namely full length emGFP-TetC (emGFP-865:TetC) or truncations comprising amino acids 1066-1315 (emGFP-1066:TetC), 1093-1315 (emGFP-1093:TetC) and 1109-1315 (emGFP-1109:TetC), produced selective, high-contrast staining of motor nerve terminals in rodent or human muscle explants. Isometric tension and intracellular recordings of endplate potentials from mouse muscles indicated that neither full-length nor truncated emGFP-TetC constructs significantly impaired NMJ function or transmission. Motor nerve terminals stained with emGFP-TetC constructs were readily visualised in situ or in isolated preparations using fibre-optic confocal endomicroscopy (CEM). emGFP-TetC derivatives and CEM also visualised regenerated NMJs. Dual-waveband CEM imaging of preparations co-stained with fluorescent emGFP-TetC constructs and Alexa647-α-bungarotoxin resolved innervated from denervated NMJs in axotomized WldS mouse muscle and degenerating NMJs in transgenic SOD1G93A mouse muscle. Our findings highlight the region of the TetC fragment required for selective binding and visualisation of motor nerve terminals and show that fluorescent derivatives of TetC are suitable for in situ morphological and physiological characterisation of healthy, injured and diseased NMJs.


Assuntos
Microscopia Confocal , Junção Neuromuscular/diagnóstico por imagem , Toxina Tetânica/toxicidade , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Sítios de Ligação , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
18.
Biomolecules ; 11(8)2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34439916

RESUMO

Current treatments for neurodegenerative diseases aim to alleviate the symptoms experienced by patients; however, these treatments do not cure the disease nor prevent further degeneration. Improvements in current disease-modeling and drug-development practices could accelerate effective treatments for neurological diseases. To that end, 3D bioprinting has gained significant attention for engineering tissues in a rapid and reproducible fashion. Additionally, using patient-derived stem cells, which can be reprogrammed to neural-like cells, could generate personalized neural tissues. Here, adipose tissue-derived mesenchymal stem cells (MSCs) were bioprinted using a fibrin-based bioink and the microfluidic RX1 bioprinter. These tissues were cultured for 12 days in the presence of SB431542 (SB), LDN-193189 (LDN), purmorphamine (puro), fibroblast growth factor 8 (FGF8), fibroblast growth factor-basic (bFGF), and brain-derived neurotrophic factor (BDNF) to induce differentiation to dopaminergic neurons (DN). The constructs were analyzed for expression of neural markers, dopamine release, and electrophysiological activity. The cells expressed DN-specific and early neuronal markers (tyrosine hydroxylase (TH) and class III beta-tubulin (TUJ1), respectively) after 12 days of differentiation. Additionally, the tissues exhibited immature electrical signaling after treatment with potassium chloride (KCl). Overall, this work shows the potential of bioprinting engineered neural tissues from patient-derived MSCs, which could serve as an important tool for personalized disease models and drug-screening.


Assuntos
Bioimpressão/métodos , Fibrina/química , Células-Tronco Mesenquimais/citologia , Tecido Nervoso/metabolismo , Impressão Tridimensional , Tecido Adiposo/metabolismo , Sobrevivência Celular , Células Cultivadas , Dopamina/metabolismo , Desenho de Fármacos , Fibronectinas/química , Humanos , Hidrogéis , Doenças Neurodegenerativas/metabolismo , Neurônios/citologia , Cloreto de Potássio/química , Engenharia Tecidual/métodos , Tecidos Suporte
19.
Acta Histochem ; 123(6): 151764, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34352653

RESUMO

Fipronil (FIP) insecticide is extensively used in agriculture, public health and veterinary medicine. Although it is considered as a neurotoxin to insects (target organisms) and exhibits neurological signs upon vertebrates (non-target organisms) exposure, slight is known about its potential neurotoxic effects and its molecular mechanisms on vertebrates. The current study is designed to assess oxidative stress as a molecular mechanism of FIP neurotoxicity subordinated with apoptosis and neural tissue reactivity. Ten adult male albino rats received 10 mg/kg body weight fipronil technical grade by oral gavage daily for 45 days (subacute exposure). Brain neural tissue regions (hippocampus, cerebellum and caudate putamen) were processed to examine oxidative stress induced cellular macromolecular alterations as MDA, PCC and DNA fragmentation. Besides, TNF-α and Bcl-2 gene expression and immunoreactivity for caspase-3 (active form), iNOS and GFAP were evaluated. Also, histopathological assessment was conducted. We found that FIP significantly raised MDA, PCC and DNA fragmentation (p ≤ 0.05). Also, it significantly upregulated TNF-α and non-significantly down-regulated Bcl-2 gene expression (p ≤ 0.05). Further, significant increased immunoreactivity to GFAP, iNOS and caspase-3 (active form) in these brain neural tissue regions in FIP treated group was noticed (p ≤ 0.05). Histopathological findings, including alterations in the histological architecture and neuronal degeneration, were also observed in these brain regions of FIP treated group. In conclusion, we suggest the ability of FIP to induce oxidative stress mediated macromolecular alterations, leading to apoptosis and tissue reaction in these brain regions which showed variable susceptibility to FIP toxic effects.


Assuntos
Apoptose/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pirazóis/efeitos adversos , Animais , Caspase 3/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/biossíntese , Masculino , Tecido Nervoso/patologia , Óxido Nítrico Sintase Tipo II/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Pirazóis/farmacologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/biossíntese
20.
Biotechnol Bioeng ; 118(11): 4217-4230, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34264518

RESUMO

Neural tissue engineering aims to restore the function of nervous system tissues using biocompatible cell-seeded scaffolds. Graphene-based scaffolds combined with stem cells deserve special attention to enhance tissue regeneration in a controlled manner. However, it is believed that minor changes in scaffold biomaterial composition, internal porous structure, and physicochemical properties can impact cellular growth and adhesion. The current work aims to investigate in vitro biological effects of three-dimensional (3D) graphene oxide (GO)/sodium alginate (GOSA) and reduced GOSA (RGOSA) scaffolds on dental pulp stem cells (DPSCs) in terms of cell viability and cytotoxicity. Herein, the effects of the 3D scaffolds, coating conditions, and serum supplementation on DPSCs functions are explored extensively. Biodegradation analysis revealed that the addition of GO enhanced the degradation rate of composite scaffolds. Compared to the 2D surface, the cell viability of 3D scaffolds was higher (p < 0.0001), highlighting the optimal initial cell adhesion to the scaffold surface and cell migration through pores. Moreover, the cytotoxicity study indicated that the incorporation of graphene supported higher DPSCs viability. It is also shown that when the mean pore size of the scaffold increases, DPSCs activity decreases. In terms of coating conditions, poly- l-lysine was the most robust coating reagent that improved cell-scaffold adherence and DPSCs metabolism activity. The cytotoxicity of GO-based scaffolds showed that DPSCs can be seeded in serum-free media without cytotoxic effects. This is critical for human translation as cellular transplants are typically serum-free. These findings suggest that proposed 3D GO-based scaffolds have favorable effects on the biological responses of DPSCs.


Assuntos
Diferenciação Celular , Polpa Dentária/metabolismo , Grafite/química , Tecido Nervoso/metabolismo , Células-Tronco/metabolismo , Engenharia Tecidual , Tecidos Suporte/química , Materiais Biocompatíveis/química , Polpa Dentária/citologia , Humanos , Tecido Nervoso/citologia , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...